Detailseite
Projekt Druckansicht

Skalierbares Autonomes Selbstverstärkendes Lernen durch Reduzierung der Vorstrukturierung

Fachliche Zuordnung Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing
Förderung Förderung von 2014 bis 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 260194412
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

In summary, the project has achieved its planned goals, albeit with not all at the same performance level. We accomplished several tasks exactly as planned, addressing the topic of learning state representation for RL. We deviated from the plan, reorienting ourselves towards transfer learning to facilitate easier exploration and representationrelated topics with several publications in order to gain more insight into real-world applications of deep neural networks. Due to issues with multiple conflicting objectives arising from the robot tetherball experiments, we addressed the topic of MORL, going beyond the minimalist plan of the proposal and achieving state-of-the-art results. Due to a substantial change of personnel, the fragility of the robot hardware, and the large number or repairs needed, the performance of follow-up tasks was below expectations. Allover, we gained important insights in scaling many different aspects of reinforcement learning towards autonomy. Based on the results of the project, we are continuing our research towards scalable autonomous reinforcement learning, and we believe we can solve the remaining pieces of the puzzle.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung