Detailseite
Projekt Druckansicht

Derivierte Kategorien, quasierbliche Algebren und torische Geometrie (A08)

Fachliche Zuordnung Mathematik
Förderung Förderung von 2014 bis 2019
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 129719356
 
Derivierte Kategorien und ihre Transformationen spielen eine zentrale Rolle in Geometrie, Algebra und Darstellungstheorie. In diesem Projekt liegt der Schwerpunkt auf der Existenz und Konstruktion von Kippbündeln auf projektiven algebraischen Varietäten und Modulräumen von Köcherdarstellungen. Häufig respektieren derivierte Äquivalenzen zusätzliche Strukturen, wie t-Strukturen, Dualitäten, exzeptionelle Folgen, orthogonale Zerlegungen oder gewisse Unterkategorien. In vielen Fällen treten dabei Höchstgewichtskategorien und quasierbliche Algebren auf.
DFG-Verfahren Sonderforschungsbereiche
Antragstellende Institution Universität Münster
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung