Detailseite
Projekt Druckansicht

Integrierte kombinatorische Kontrolle von thermischen und elektrischen Transporteigenschaften in Silizide

Fachliche Zuordnung Herstellung und Eigenschaften von Funktionsmaterialien
Festkörper- und Oberflächenchemie, Materialsynthese
Förderung Förderung von 2014 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 263867579
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

The international corporation project ICETS contributed to the understanding of multinary silicides with respect to their electrical and thermal transport properties by experimental and computational efforts. Silicides are part of several technologies, but current knowledge of their properties is fragmented and incomplete. Many phases still need to be explored and there is a need for systematic determination and understanding of their transport properties. Therefore, thin-film materials libraries were fabricated by combinatorial magnetron sputtering processes in the Fe-Si-Ge-Sn system. These materials libraries were assessed for phase stability ranges of single and multiphase regions and composition-structure property relations. Measured functional properties were electrical resistance and thermal conductivity. The challenge of measuring thermal conductivity of thin-film libraries was met by developing successfully high throughput heterodyne time domain thermo-reflectance (HT-TDTR) measurements. Major results of the computational part of the project concerned the accelerated calculation of stability and thermodynamic properties of materials using density functional and machine learning methods.

Projektbezogene Publikationen (Auswahl)

  • “Ab initio investigation of the anomalous phonon softening in FeSi” Phys. Rev. B, vol. 94, no. 14, p. 144304 (2016)
    R. Stern, G. K. H. Madsen
    (Siehe online unter https://doi.org/10.1103/PhysRevB.94.144304)
  • “Influence of the optical-acoustic phonon hybridization on phonon scattering and thermal conductivity,” Phys. Rev. B, vol. 93, no. 20, p. 205203, May 2016
    W. Li, J. Carrete, G. K. H. Madsen, and N. Mingo
    (Siehe online unter https://doi.org/10.1103/PhysRevB.93.205203)
  • High-throughput heterodyne thermoreflectance: Application to thermal conductivity measurements of a Fe-Si-Ge thin film alloy library, Review of Scientific Instruments, 88 (7), art. no. 074902 (2017)
    D’Acremont, Q., Pernot, G., Rampnoux, J.-M., Furlan, A., Lacroix, D., Ludwig, A., Dilhaire, S.
    (Siehe online unter https://doi.org/10.1063/1.4986469)
  • Influence of Substrate Temperature and Film Thickness on Thermal, Electrical, and Structural Properties of HPPMS and DC Magnetron Sputtered Ge Thin Films, Advanced Engineering Materials, 19 (5), art. no. 1600854 (2017)
    Furlan, A., Grochla, D., D’Acremont, Q., Pernot, G., Dilhaire, S., Ludwig, A.
    (Siehe online unter https://doi.org/10.1002/adem.201600854)
  • Materials Screening for the Discovery of New Half-Heuslers: Machine Learning versus ab Initio Methods. J. Phys. Chem. B, (2017)
    Legrain, F., Carrete, J., van Roekeghem, A., Madsen, G. K. H., Mingo, N.
    (Siehe online unter https://doi.org/10.1021/acs.jpcb.7b05296)
  • "Influence of point defects on the thermal conductivity in FeSi", Phys. Rev. B 97, 195201 (2018)
    Stern, R., Wang, T., Carrete, J., Mingo, N., Madsen, G. K. H.
    (Siehe online unter https://doi.org/10.1103/PhysRevB.97.195201)
  • Vibrational Properties of Metastable Polymorph Structures by Machine Learning. Journal of Chemical Information and Modeling (2018)
    Legrain, F., van Roekeghem, A., Curtarolo, S., Carrete, J., Madsen, G. K. H., Mingo, N.
    (Siehe online unter https://doi.org/10.1021/acs.jcim.8b00279)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung