Project Details
A stable, efficient and accurate high-order discretization for low Mach flows
Applicant
Professor Dr. Sebastian Noelle
Subject Area
Mathematics
Term
from 2016 to 2021
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 318864836
Final Report Year
2021
No abstract available
Publications
-
A high-order method for weakly compressible flows. Communications in Computational Physics, 22(4):1150–1174, 2017
Kaiser, Klaus & Schütz, Jochen
-
The influence of the asymptotic regime on the RS-IMEX. In Peregrina Quintela, Patricia Barral, Dolores Gómez, Francisco J. Pena, Jerónimo Rodríguez, Pilar Salgado, and Miguel E. Vázquez-Méndez, editors, Progress in Industrial Mathematics at ECMI 2016, pages 55–66, Cham, 2017. Springer International Publishing
Kaiser, Klaus & Schütz, Jochen
-
Asymptotic error analysis of an IMEX Runge–Kutta method. Journal of Computational and Applied Mathematics, 343:139–154, 2018
Kaiser, Klaus & Schütz, Jochen
-
Efficient high-order discontinuous Galerkin computations of low Mach number flows. Communications in Applied Mathematics and Computational Science, 13:243–270, 2018
Zeifang, Jonas; Kaiser, Klaus; Beck, Andrea; Schütz, Jochen & Munz, Claus-Dieter
-
A novel full-Euler low Mach number IMEX splitting. Communications in Computational Physics, 27:292–320, 2020
Jonas Zeifang, Jonas Zeifang; Jochen Schütz, Jochen Schütz; Klaus Kaiser, Klaus Kaiser; Andrea Beck, Andrea Beck; Maria Lukáčová-Medvid'ová, Maria Lukáčová-Medvid'ová & Sebastian Noelle, Sebastian Noelle
