Project Details
A stable, efficient and accurate high-order discretization for low Mach flows
Applicant
Professor Dr. Sebastian Noelle
Subject Area
Mathematics
Term
from 2016 to 2021
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 318864836
Final Report Year
2021
Final Report Abstract
No abstract available
Publications
-
A high-order method for weakly compressible flows. Communications in Computational Physics, 22(4):1150–1174, 2017
K. Kaiser and J. Schütz
-
The influence of the asymptotic regime on the RS-IMEX. In Peregrina Quintela, Patricia Barral, Dolores Gómez, Francisco J. Pena, Jerónimo Rodríguez, Pilar Salgado, and Miguel E. Vázquez-Méndez, editors, Progress in Industrial Mathematics at ECMI 2016, pages 55–66, Cham, 2017. Springer International Publishing
Klaus Kaiser and Jochen Schütz
-
Asymptotic error analysis of an IMEX Runge–Kutta method. Journal of Computational and Applied Mathematics, 343:139–154, 2018
K. Kaiser and J. Schütz
-
Efficient high-order discontinuous Galerkin computations of low Mach number flows. Communications in Applied Mathematics and Computational Science, 13:243–270, 2018
J. Zeifang, K. Kaiser, A. Beck, J. Schütz, and C.-D. Munz
-
A novel full-Euler low Mach number IMEX splitting. Communications in Computational Physics, 27:292–320, 2020
J. Zeifang, J. Schütz, K. Kaiser, A. Beck, M. Lukáčová-Medvid’ová, and S. Noelle