Detailseite
Projekt Druckansicht

Die Rolle ferromagnetischen Eisens in der Planetesimalentstehung

Fachliche Zuordnung Astrophysik und Astronomie
Förderung Förderung von 2016 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 320743803
 
Erstellungsjahr 2020

Zusammenfassung der Projektergebnisse

Planetary bodies in the solar system show an iron gradient with iron-rich bodies being closer to the sun. An extreme is Mercury with an iron core well beyond the average planetary core size. There are also a couple of extrasolar planets found which are iron-rich. Hubbard (2014) suggested magnetic erosion as a model to explain selective growth of iron-rich matter. In the magnetic fields of a protoplanetary disk, ferromagnetic material would be harder to fragment and easier to reassemble. We verified this idea in laboratory experiments. While we found that this mechanism does not work at the high energies, we found a magnetic boost in growth at the bouncing barrier, where collisions usually no longer lead to sticking and growth but where particles bounce off each other. The size of particles is increased for (metallic) iron-rich matter in magnetic fields. This magnetic boost sets a bias in particle growth. If this is inherited to later evolutionary phases, this indeed offers a way to explain the formation of iron-rich planets and an iron gradient in planetary systems.

Projektbezogene Publikationen (Auswahl)

  • Seeding the Formation of Mercurys: An Iron-sensitive Bouncing Barrier in Disk Magnetic Fields, Astrophysical Journal, 869:45 1-6, 2018
    M. Kruss and G. Wurm
    (Siehe online unter https://doi.org/10.3847/1538-4357/aaec78)
  • Are Pebble Pile Planetesimals Doomed?, Monthly Notices of the Royal Astronomical Society, 484:2779-2785, 2019
    T. Demirci, M. Kruss, J. Teiser, T. Bogdan, F. Jungmann, N. Schneider, and G. Wurm
    (Siehe online unter https://doi.org/10.1093/mnras/stz107)
  • ARISE: A Granular Matter Experiment on the International Space Station, Review of Scientific Instruments, 90:104503 1-8, 2019
    T. Steinpilz, G. Musiolik, M. Kruss, F. Jungmann, T. Demirci, M. Aderholz, J. E. Kollmer, J. Teiser, T. Bila, E. Guay, and G. Wurm
    (Siehe online unter https://doi.org/10.1063/1.5095213)
  • Constrains on Compound Chondrule Formation from Laboratory High Temperature Collisions, Icarus, 319:133- 139, 2019
    T. Bogdan, J. Teiser, N. Fischer, M. Kruss, and G. Wurm
    (Siehe online unter https://doi.org/10.1016/j.icarus.2018.09.011)
  • Composition and Size Dependent Sorting in Preplanetary Growth: Seeding the Formation of Mercury-like Planets, Planetary Science Journal, 1:23 1-6, 2020
    M. Kruss and G. Wurm
    (Siehe online unter https://doi.org/10.3847/PSJ/ab93c4)
  • Laboratory Impact Splash Experiments to Simulate Asteroid Surfaces, Icarus, 341:113646 1-6, 2020
    T. Bogdan, J. Kollmer, J. Teiser, M. Kruss, and G. Wurm
    (Siehe online unter https://doi.org/10.1016/j.icarus.2020.113646)
  • Wind Erosion on Mars and other Small Terrestrial Planets, Icarus, 337:113438 1-6, 2020
    M. Kruss, G. Musiolik, T. Demirci, G. Wurm, and J. Teiser
    (Siehe online unter https://doi.org/10.1016/j.icarus.2019.113438)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung