Detailseite
Projekt Druckansicht

Rechnergestützte Modellierung und Kontrolle von langlebigen elektronischen Kohärenzen: Zur Quantendynamik von Makrosystemen

Fachliche Zuordnung Theoretische Chemie: Elektronenstruktur, Dynamik, Simulation
Förderung Förderung von 2017 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 357034241
 
Erstellungsjahr 2020

Zusammenfassung der Projektergebnisse

During this project two new methodologies were implemented, which address two important challenges in the study from a quantum dynamical perspective of chemical processes in large dimensionality. These being the global and accurate fits of high-dimensional potential energy surfaces that can now be done in larger systems (c.a. 33 coordinates) without essentially sacrificing any accuracy and the automatic converge of dynamic simulations in such large molecules by regularizing the MCTDH EOMs through an optimal choice on-the-fly of unoccupied SPFs that can achieve important savings in computational cost. These two developments required substantial additional work from the one expected in the original proposal, which compromised the last stage on the study of ET in a protein environment. However, it was still possible to propose a new reactive mechanistic scenario in Crytochrome proteins, which sets the grounds for its extension in the near future from a simple spin-boson model to more complex Hamiltonian models through the aforementioned tools developed and fully implemented in the MCTDH package.

Projektbezogene Publikationen (Auswahl)

  • Multidimensional Quantum Mechanical Modeling of Electron Transfer and Electronic Coherence in Plant Cryptochromes: The Role of Initial Bath Conditions. J. Phys. Chem. B 122 (2018), 126-136
    D. Mendive-Tapia, E. Mangaud, T. Firmino, A. de la Lande, M. Desouter- Lecomte, H.-D. Meyer, and F. Gatti
    (Siehe online unter https://doi.org/10.1021/acs.jpcb.7b10412)
  • Regularizing the MCTDH equations of motion through an optimal choice on-the-fly (i.e. spawning) of unoccupied single particle functions. J. Chem. Phys. 153 (2020), 234114
    D. Mendive-Tapia and H.-D. Meyer
    (Siehe online unter https://doi.org/10.1063/5.0035581)
  • Transforming high-dimensional potential energy surfaces into a canonical polyadic decomposition using Monte Carlo methods. J. Chem. Phys. 152 (2020), 024108
    M. Schröder
    (Siehe online unter https://doi.org/10.1063/1.5140085)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung