Project Details
Projekt Print View

The Data-dependency Gap: A New Problem in the Learning Theory of Convolutional Neural Networks

Subject Area Image and Language Processing, Computer Graphics and Visualisation, Human Computer Interaction, Ubiquitous and Wearable Computing
Term since 2021
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 464252197
 
In Statistical learning theory, we aim to prove theoretical guarantees on the generalization ability of machine learning algorithms. The approach usually consists in bounding the complexity of the function class associated with the algorithm. When the complexity is small (compared to the number of training samples), the algorithm is guaranteed to generalize well. For neural networks however, the complexity is oftentimes extremely large. Nevertheless, neural networks—and convolutional neural networks especially—have achieved unprecedented generalization in a wide range of applications. This phenomenon cannot be explained by standard learning theory. Although a rich body of literature provides partial answers through analysis of the implicit regularization imposed by the training procedure, the phenomenon is by large not well understood. In this proposal, we introduce a new viewpoint on the “surprisingly high” generalization ability of neural networks: the data-dependency gap. We argue that the fundamental reason for these unexplained generalization abilities may well lie in the structure of the data itself. Our central hypothesis is that the data acts as a regularizer on neural network training. The aim of this proposal is to verify this hypothesis. We will carry out empirical evaluations and develop learning theory, in the form of learning bounds depending on the structure in the data. Here we will connect the weights of trained CNNs with the observed inputs at hand, taking into account the structure in the underlying data distribution. We focus on convolutional neural networks, the arguably most prominent class of practical neural networks. However, the present work may pave the way for the analysis of other classes of networks (this may be tackled in the second funding period of the SPP).
DFG Programme Priority Programmes
 
 

Additional Information

Textvergrößerung und Kontrastanpassung