Detailseite
Projekt Druckansicht

TRR 358:  Ganzzahlige Strukturen in Geometrie und Darstellungstheorie

Fachliche Zuordnung Mathematik
Förderung Förderung seit 2023
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491392403
 
Ganzzahlige Strukturen treten an verschiedenen Stellen verteilt über die gesamte Mathematik auf. Wir begegnen ihnen als Gitter im Euklidischen Raum, als ganze Modelle von reduktiven Gruppen oder von Schemata der algebraischen Geometrie oder als ganzzahlige Darstellungen von Gruppen und Algebren. Selbst Fragen über die grundlegendste ganzzahlige Struktur, den Ring der ganzen Zahlen, führen schnell in die Analysis, Algebra oder Geometrie. Überhaupt lassen sich ganzzahlige Strukturen erfolgreich vor allem dann untersuchen, wenn wir sie aus verschiedenen Blickwinkeln betrachten. Oft erfordern diese Untersuchungen den Einsatz modernster Methoden und bringen überraschende Verbindungen ans Licht.Wandmustergruppen, also diskrete Gruppen von Bewegungen der Ebene, die zwei unabhängige Verschiebungen enthalten, können diesen Punkt illustrieren. Sie liegen doppelt periodischen Mustern zugrunde, wie wir sie von Mosaiken der Alhambra kennen. Die Klassifikation derWandmustergruppen ist klassisch: Es gibt genau 17 wesentlich verschiedene Wandmustergruppen. Aus geometrischer Sicht sind damit zugleich die kompakten zwei-dimensionalen Orbifolds mit Euklidischer Metrik klassifiziert; und auf darstellungstheoretischer Seite ist diese Klassifikation Teil der Klassifikation erblicher Kategorien über dem Körper der reellen Zahlen.Da ganzzahlige Strukturen einen Zugang erfordern, der verschiedene mathematischen Teildisziplinen einbindet, beinhaltet unsere Unternehmung ein breites Forschungsprogramm von algebraischer Geometrie zur Analysis auf Mannigfaltigkeiten, von geometrischer Gruppentheorie und algebraischer Kombinatorik zur Darstellungstheorie assoziativer Algebren. Mit den vereinten Kräften der beteiligten Universitäten beabsichtigen wir bedeutende Fragestellungen in der algebraischen und analytischen Theorie automorpher Formen, der kategoriellen Darstellungstheorie und algebraischen Geometrie sowie der klassischen und p-adischen harmonischen Analysis auf symmetrischen Räumen zu beantworten.
DFG-Verfahren Transregios

Laufende Projekte

Antragstellende Institution Universität Bielefeld
Mitantragstellende Institution Universität Paderborn
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung